Adaptive synthesis of dynamically feasible full-body movements for the humanoid robot HRP-2 by flexible combination of learned dynamic movement primitives
نویسندگان
چکیده
Skilled human full-body movements are often planned in a highly predictive manner. For example, during walking while reaching towards a goal object results in steps and body postures are adapted to the goal position already multiple steps before the goal contact. The realization of such highly predictive behaviors for humanoid robots is a challenge because standard approaches, such as optimal control, result in computation times that are prohibitive for the predictive control of complex coordinated full-body movements over multiple steps. We devised a new architecture that combines the online-planning of complex coordinated full-body movements, based on the flexible combination of learned dynamic movement primitives, with a Walking Pattern Generator (WPG), based on Model Predictive Control (MPC), which generates dynamically feasible locomotion of the humanoid robot HRP-2. A dynamic filter corrects the Zero Moment Point (ZMP) trajectories in order to guarantee the dynamic feasibility of the executed behavior taking into account the upper-body movements, at the same time ensuring an accurate approximation of the planned motion trajectories. We demonstrate the high flexibility of the chosen movement planning approach, and the accuracy and feasibility of the generated motion. In addition, we show that a naı̈ve approach, which generates adaptive motion by using machine learning methods by the interpolation between feasible training motion examples fails to guarantee the stability and dynamic feasibility of the generated behaviors.
منابع مشابه
Dynamic Whole Body Motion Generation for the Dance of a Humanoid Robot
In October 2012, the humanoid robot HRP-2 was presented during a live demonstration performing fine-balanced dance movements with a human performer in front of more than 1000 people. This success was possible by the systematic use of operational-space inverse dynamics to compute dynamically consistent movements following a motion capture pattern demonstrated by a human choreographer. The first ...
متن کاملModeling of human movement for the generation of humanoid robot motion
Humanoid robotics is coming of age with faster and more agile robots. To compliment the physical complexity of humanoid robots, the robotics algorithms being developed to derive their motion have also become progressively complex. The work in this thesis spans across two research fields, human neuroscience and humanoid robotics, and brings some ideas from the former to aid the latter. By explor...
متن کاملFlexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملMechatronic Hand Design with Integrated Mechanism in Palm for Efficiency Improve of the Finger.
One of the most important case in humanoid robot designing is hand, which it consider as an country development. High percentage of robot work quality depend on hand capability. A robot function increase with hand movement. One of important movement in artificial hand capability relate to fingers lateral movement. This case has more effect intake of special objects such as round shape or moving...
متن کاملLeg Motion Primitives for a Humanoid Robot to Imitate Human Dances
The goal of the study described in this paper is to develop a total technology for archiving human dance motions. A key feature of this technology is a dance replay by a humanoid robot. Although human dance motions can be acquired by a motion capture system, a robot cannot exactly follow the captured data because of different body structure and physical properties between the human and the robo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Robotics and Autonomous Systems
دوره 91 شماره
صفحات -
تاریخ انتشار 2017